THE HANDBOOK OF
BULK SUPPLY
INTERCONNECTION
BULK SUPPLY INTERCONNECTION GUIDELINE
Disclaimer: This document serves as a generic guideline for the types of interconnections and TNB’s requirements for LPC to be connected to the Grid System. However, detailed boundaries of asset ownership, operation/maintenance and control of the respective plants shall be clearly demarcated and highlighted in the IOM document that shall be signed off prior to commercial operation of the plant.

© Copyright 2010 Tenaga Nasional Berhad
ACKNOWLEDGEMENT

The committee would like to thank the following people, from various departments of TNB, namely Asset Management Department, System Operation Department, Strategic Management & Development Department and Planning Division for their full effort and support in drafting this valuable document;

Main Committee Members

Ir. Dev Anandan
[Chairman]

Gobi Kannan Supramaniam
Norlizawati Othman
[Technical Writer]

Arshad Abdul Aziz
Chung Yoke Wai
Kennedy Solomon
Khoo Kian Meng

Contributing Members

Ir. Azman Hassan
Nur Safiah Binti Dzulkefli
Haji Mohamed Rafiki Bin Ahmad Rashid
Ernidawati Binti Abdul Karim
Mizam Mustafa
Shahrul Azad Zaharom
Arjurin Abdul Jalil
Siti Harlina Binti Abdul Wahid
Nor Syahida Binti Abd. Kadir
SUGGESTIONS AND CONTRIBUTIONS

All constructive suggestions and contributions for this document should be directly addressed to;

Vice President (Transmission)
Tenaga Nasional Berhad
Level 3, Bangunan NLDC
No. 129, Jalan Bangsar
59200 Kuala Lumpur

and copy to;

General Manager (Asset Management Department)
Transmission Division
Tenaga Nasional Berhad
Level 2, Bangunan Penghantaran
No. 129, Jalan Bangsar
59200 Kuala Lumpur
This page is intentionally left blank
Foreword by President/CEO of TNB

Assalamualaikum & warm regards to all our esteemed customers.

This Bulk Supply Interconnection Guideline handbook has been specially developed to assist our network planners, large power consumers and consultants on the technical requirements for interconnection / bulk supply connection to electrical transmission installations and facilities in ensuring availability, security and reliability of electricity supply to the grid system network.

The handbook was developed in the spirit of best international practices of other worldwide electricity utility companies. It provides broad guidelines on operation and maintenance and the ownership of installation boundaries between Tenaga Nasional Berhad (TNB) and large power consumers depending on the types of connectivity to the grid system network. It is highly critical for such operation and maintenance and the ownership of electrical installations to be effectively and efficiently managed, and benchmarked accordingly by virtue of the required interconnection facilities which are on par with accepted international standards.

Hence, TNB has taken the initiatives to develop this handbook in great technical and operational details for the benefit of our customers, especially the large power consumers and our network planners and consultants.

It is our sincere hope that by virtue of this handbook, all our large power consumers who are connected to the grid system network would be able to understand and appreciate our operational and maintenance requirements so as to be in compliance with all licence and statutory requirements under the provisions of the Electricity Supply Act 1990 for the benefit of the Malaysian electricity supply industry in totality.

Additionally, it is also our hope that our network planners and consultants would be able to better plan, procure and design electrical plant facilities in compliance with all technical and operational requirements of various types of interconnection modes.

With that, we thank you.

Dato’ Sri Che Khalib Mohamad Noh
President / Chief Executive Officer
Tenaga Nasional Berhad.
Foreword by Vice President (Transmission Division of TNB)

Assalamualaikum & warm regards to all our esteemed customers.

As one of the core divisions in Tenaga Nasional Berhad (TNB), Transmission Division is responsible to ensure a safe, secured and reliable transmission grid system network for the entire nation. Apart from serving the nation’s grid system which spans more than 15,000 circuit-km in totality, our existing transmission system network is also interconnected to our large power consumers who sourced their electricity directly from the national grid system, hence the stability of such grid system is of utmost importance to us in TNB without any compromise whatsoever.

It is due to such responsibility that Transmission Division of TNB has taken the initiatives to develop this Bulk Supply Interconnection Guideline handbook, the purpose of which is for one to appreciate the technical requirements for interconnection / bulk supply connection to electrical transmission installations and facilities to ensure the reliability of our electricity supply as well as the boundary of responsibility for the operation and maintenance of these installations and facilities between TNB and our large power consumers, depending upon the mode of connectivity to the grid system network.

The handbook was developed and benchmarked with accepted best international practices of other worldwide electricity utility companies in great operational and technical details for the benefit of our customers, especially the large power consumers, and not to mention, our network planners and consultants.

By clearly defining the scope of operation and maintenance of electrical transmission installations which also covers the ownership boundaries of these installations between TNB and our large power consumers, it is hoped that one would be able to understand and appreciate the operational and maintenance requirements of the grid system network in compliance with TNB’s licence and statutory requirements under the provisions of the Electricity Supply Act 1990.

Last but not least, the handbook would also benefit our network planners and consultants in terms of better future planning, procurement and designing of electrical plant facilities as an important point of technical reference.

Thank you.

Datuk Rozimi Remeli
Vice President (Transmission)
Tenaga Nasional Berhad.
TABLE OF CONTENT

<table>
<thead>
<tr>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0 Introduction</td>
</tr>
<tr>
<td>2.0 Objective</td>
</tr>
<tr>
<td>3.0 Maintenance/Operation/Ownership Boundary & Requirement</td>
</tr>
<tr>
<td>3.1 Medium of Interconnection</td>
</tr>
<tr>
<td>3.1.1 Over Head Line (OHL)</td>
</tr>
<tr>
<td>3.1.2 Under Ground Cable (UGC)</td>
</tr>
<tr>
<td>3.1.3 Gas Insulated Bus-Duct (GIB) –Special Cases</td>
</tr>
<tr>
<td>3.2 Interconnection Facilities</td>
</tr>
<tr>
<td>3.3 Responsibilities</td>
</tr>
<tr>
<td>3.3.1 Ownership & Maintenance</td>
</tr>
<tr>
<td>3.3.2 Operation</td>
</tr>
<tr>
<td>3.3.3 Control</td>
</tr>
<tr>
<td>3.4 Record of Interconnection Safety Precaution (RISP)</td>
</tr>
<tr>
<td>3.5 Energy Commission (EC) Competent Engineer</td>
</tr>
<tr>
<td>3.6 Interconnection Operation Manual (IOM)</td>
</tr>
<tr>
<td>3.7 Selection Criteria for Interconnection System Voltage</td>
</tr>
<tr>
<td>4.0 General Requirement</td>
</tr>
<tr>
<td>4.1 Basic Requirement</td>
</tr>
<tr>
<td>4.2 Additional Requirements</td>
</tr>
<tr>
<td>4.3 Protection Scheme Guidelines</td>
</tr>
<tr>
<td>5.0 Types of Interconnection Options Allowed by TNB</td>
</tr>
<tr>
<td>5.1 Option 1A, 1B & 1C: Spur feed connection from new switching station (double circuit OHL/UGC/GIB)</td>
</tr>
<tr>
<td>5.2 Option 2A & 2B: Spur feed connection from existing PMU (double circuit OHL/UGC)</td>
</tr>
<tr>
<td>6.0 Special Interconnection (Co-Generation, Standby Generator etc.)</td>
</tr>
<tr>
<td>7.0 Other Modes of Interconnections</td>
</tr>
<tr>
<td>8.0 References</td>
</tr>
<tr>
<td>Appendix I : Ownership and Maintenance Boundary</td>
</tr>
<tr>
<td>Appendix II : Typical System Configuration or Installations</td>
</tr>
</tbody>
</table>
1.0 INTRODUCTION

This document serves as a guideline ("Guideline") for Network planners ("Planners") and Large Power Consumers ("LPC") and Consultants to appreciate the requirements for interconnection/bulk supply connection to Transmission’s installations/facilities to facilitate and ensure the reliability of supply as well as the area/ boundary of responsibility for Operation & Maintenance of these installations/facilities between Tenaga Nasional Berhad and LPC, depending on the type/mode of connectivity to the grid network system ("Grid System").

2.0 OBJECTIVE

Transmission Division ("TD") of Tenaga Nasional Berhad ("TNB") is responsible for the management of transmission network system as provided under the provisions of TNB’s Conditions of License issued in accordance with Electricity Supply Act 1990 (Act 447). All electric power system licensees in its course of its business shall comply with the Malaysian Grid Code ("Grid Code") which provides for criteria guidelines and procedures for the development and operation of the Grid System. In compliance to the Grid Code and TNB’s Conditions of License, TD has developed Transmission Reliability Standards relating to provisions of sufficient Transmission capacity, operational facilities, maintenance activities and coordination with generation and distribution functions so as to enable continued supply of electricity energy to the distribution system and LPC.

The main objectives of this guideline are as follows:-

i. To guide Planners (Transmission & Distribution), Consultants and LPC on the technical considerations/aspects of supply interconnection to TD and other salient requirements with regards to system security, availability and reliability of supply in the Grid System as well as to the LPC.

ii. To ensure LPC connected to TD network system are in compliance with TNB’s License Condition 13 and Transmission Reliability Standards under
Clause 3.3.1, which require sufficient investment in planning, development and operation of the system under normal and secured n-1 contingency outage condition.

iii. To enable Consultants and LPC to better plan, procure and design plant facilities in accordance to TD’s requirements, having knowledge of technical and operational advantages/constraints of the various types of interconnection modes.

3.0 MAINTENANCE / OPERATION / OWNERSHIP BOUNDARIES & OPERATIONAL REQUIREMENTS

This section describes the different supply interconnection modes, boundaries and the specific operational requirements between TD and LPC. The interconnection point shall be used to demarcate the boundary between TNB and LPC and shall be referred/considered as the supply and delivery point. The interconnection point shall depend on the medium of interconnection as well as the type of substations involved, either Air Insulated Substations (“AIS”) or Gas Insulated Substations (“GIS”).

3.1 Medium of Interconnection

Supply connection to LPC shall be provided through three (3) mediums:

3.1.1 Overhead Line (“OHL”)

Interconnection point shall be the T-clamp used to support down-dropper to LPC’s equipment. In this case, the clamp and down-dropper itself is under LPC’s jurisdiction. However, the OHL landing to LPC’s gantry is under TNB’s purview.

3.1.2 Underground Cable (“UGC”)

Interconnection point shall be at the sealing end (termination) or at cable compartment of GIS at LPC’s end. The cable at LPC’s end belongs to TNB
whilst the sealing end/cable compartment in GIS at LPC’s end onwards belongs to LPC.
Note: UGC medium of connection to LPC shall only be considered if its spur connected and auto-reclosing facility is NOT critical to/required by the Grid System.

3.1.3 Gas Insulated Bus-Duct(“GIB”) – Special Cases

Interconnection point shall be the first landing/termination at the GIS in LPC’s premise, namely the VT or isolator compartment of GIS.
Note: GIB medium of connection to LPC shall only be considered if its spur connected and the auto-reclosing facility is NOT critical to/required by the Grid System. Unit protection shall be required for the GIB portion.

Refer to Appendix I for the typical mediums of interconnections between TNB and LPC as well the defined boundary demarcations.

3.2 Interconnection Facilities

The interconnection facility between TD and LPC (at both end/s of interconnecters) shall comprise complete or typical equipment of a standard bay, namely with isolators, Surge Arrestors(“SA”), Circuit Breakers(“CB”) and busbar, inclusive of Current Transformers (“CT”) and Capacitive Voltage Transformers (“CVT”) and the associated remote control and protection panels, relays, metering, AC and DC distribution system located at the LPC substation.
It is imperative that LPC shall design and provide the appropriate ratings of interconnecting equipment, in line/tandem with interconnecting facility’s rating. (Refer Appendix II).

TNB highly recommends that the supply feed to the installation LPC adopt the criteria for duplicated in-feed to enhance supply security and reliability to the customer. TNB shall not be liable at any time whatsoever for any disruption or loss of load that occurs due to LPC’s refusal or failure to comply with the recommended secured/reliable mode of interconnection.

Note : LPC shall be fully responsible for the design and operational flexibility of their plant, particularly in terms of paralleling the supply in-
feed from TNB to their plant and for their downstream operations and requirements. TNB shall not be liable at any time whatsoever for any supply disruption to the LPC (either under abnormal situation or under external disturbance/contingencies) as a consequence of the LPC’s inability to fully utilise the supply in-feed provided.

3.3 Responsibilities

This section describes the operational, ownership and maintenance responsibilities between TD and LPC interconnection boundaries.

3.3.1 Ownership and Maintenance

Each party is responsible for the maintenance of equipment within each party’s respective boundary. The interconnection point shall define the ownership boundary. TD and LPC are required to be responsible for the operation, maintenance, replacement and refurbishment of the equipment under both respective jurisdictions as demarcated in Appendix I.

3.3.2 Operation

Each party is responsible for the operation of equipment under each party’s purview. Only authorised personnel shall be allowed to carry out switching activities on the equipment. Both parties shall jointly agree on the switching operations that involve the interconnection facility. Issuance of Record of Interconnection Safety Precaution (“RISP”) shall be made compulsory before any switching operation can be performed.

3.3.3 Control

Switching operations, governed by the RISP procedure for high voltage (“HV”) equipments, shall only be permitted once approval/sanction from both control centres is obtained.

In general, all operations and maintenance activities, either planned/scheduled or unplanned (breakdown or corrective works) shall be governed by the
Interconnection Operation Manual (“IOM”) to be signed by both parties prior to the commercial operation of the plant as described in section 3.6 below.

However, TNB shall reserve the absolute right to carry out any switching operation and disrupt supply to LPC either under contingency and/or emergency situations, whichever may be, without prior consultation and approval from LPC to safeguard the integrity, reliability and safety of the Grid System.

3.4 Record of Interconnection Safety Precaution (“RISP”)

RISP shall be used to record switching, isolation, earthing and cancellation of outages upon completion of work. RISP document shall be filled up by the authorised engineers who shall ensure that all safety procedures, precautions and isolations of the plant to be worked on, from the live system is strictly adhered and complied to.

3.5 Energy Commission (“EC”) Competent Engineer

LPC shall provide details of their Energy Commission (“EC”) Competent Engineer to TD. LPC shall engage an in-house EC Competent Engineer (“Residence Engineer”) whom shall be available at all times for any switching operations.

3.6 Interconnection Operation Manual (IOM)

Interconnection Operation Manual (“IOM”) is a document that shall be duly agreed and endorsed by both parties prior to the commercial operation of the plant. A copy of IOM shall be made available to the person(s) directly involved with the control and operation of Interconnection Facility. This document outlines a few main functions and the highlights of its contents are as stipulated below:-

i. Apply prudent utility practices to ensure safe and reliable operation of the interconnection facilities.

ii. Facilitate the control and operation of the Facility by the control engineers at National Load Dispatch Center (“NLDC”) of TNB and LPC control room.
iii. Ensure the coordination of interrelated operations of the TNB power system and LPC facility.

iv. Outlines the duties and routine procedures to be carried out by those persons who are directly involved with the control and operation of both the TNB and LPC Interconnection Facilities as defined in the Power Purchase Agreement (“PPA”) and/or Service Level Agreement (“SLA”), whichever may be.

v. Supplementary to, but does not authorise any departure from the PPA/SLA, Malaysian Grid Code, Electricity Supply Act 1990, Electricity Regulations 1994 and TNB Supply Rules and/or any successor Act(s). If any conflict should arise between the PPA/SLA and the Malaysian Grid Code and/or the TNB Supply Rules and/or any successor Act(s), the provisions of such PPA/SLA shall prevail except during System Emergencies as defined in the PPA/SLA.

3. 7 Selection Criteria for Interconnection System Voltage

The decision on the system voltage provided to LPC customers is governed by the maximum demand (“MD”) declared by the LPC customer. New LPC applicants are required to give an accurate projection of their MD. The general criterion used for system voltage selection is illustrated in Table 1 below:

Table 1: Supply Voltage Requirement for LPC customer in TNB system

<table>
<thead>
<tr>
<th>Option</th>
<th>Maximum Demand (MD)</th>
<th>TNB System Voltage Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>25MVA≤MD<100MVA</td>
<td>132kV or 275kV</td>
</tr>
<tr>
<td>B</td>
<td>MD ≥100MVA</td>
<td>275kV</td>
</tr>
</tbody>
</table>

However, TNB shall reserve the absolute right to provide alternative arrangements after taking into consideration the location, economic and system security factors.

4.0 GENERAL REQUIREMENT

Unless specified otherwise, the LPC’s plant and the switching station shall comply with the latest edition and corrigendum of the appropriate IEC International Standards, and where no IEC Standard exists, the appropriate
British Standard in terms of equipment specification and ratings shall be applied.

LPC plants that have “step-loads”, shall prove (by calculation) that their plant systems and operations shall NOT generate harmonics or disturbances above the stipulated limits to the Grid System, with or without compensating devices/equipments [Static Var Compensators (“SVCs”) or harmonic filters).

This Guideline focuses on the requirements of the Protection and Control systems that need to be adhered to by the LPC. It is the responsibility of the LPC to provide all the necessary protective devices to protect the LPC’s equipment from damage by any abnormal external system conditions and operations that may occur on the interconnected power system. Additionally, the protective devices shall selectively, reliably and speedily isolate faults/failures on LPC’s equipment/premise to safeguard the interconnection facilities and TNB’s equipment.

This includes but not limited to the following conditions:-

i. Short circuit conditions (Ground fault, two phase or three phase fault conditions).
ii. Open circuit conditions.
iii. Over and under frequency/voltage conditions.
iv. Other system condition such as overloading, phase unbalance, Phase/current reversal conditions.
v. Automatic reclosing.

4.1 Basic Requirements

All relay schemes, setting calculation and coordination at the interconnection facility shall adhere to the practice and requirement of TNB and shall be submitted to TNB for approval.

The protection system requirement of the LPC installation shall comply with the latest version of TNB’s “Transmission Protection Application Guideline” document. This document provides guidelines on the following:-
i. Type of protective relays based on system configuration and connectivity
ii. Redundancy of protective system: main and backup protection.
iii. AC/DC system requirement.
iv. Fault clearance time/speed.
v. Auto-reclosing requirements.

Compatible relaying equipment shall be used/provided on each side of the interconnection facility, which is subjected to the list of TNB’s approved types (make and version) of relays. The rest of the protective relays used in the LPC plant shall comply with TNB’s required characteristics of protective functions and speed of detection and isolation of faults.

4.2 Additional requirements

Upon completion of construction, a registered testing company with TNB shall perform functional tests of all the protective and primary equipment, with special emphasis given at the interconnection facility. TNB shall reserve the absolute right to witness these pre-commissioning tests.

LPC shall investigate and keep a log of all protective relay operation and indications as required. TNB shall reserve the absolute right to request this log for investigation or restoration purposes of the interconnection in the event of an emergency(ies).

Depending upon the nature, source and supply in-feed of the interconnection, it may be necessary to install special relaying or transfer trip equipment. Some relay protection schemes may require communication channels as below:-

i. Transfer trip of the interconnection circuit breakers, specifically GIS interconnection.
ii. Protection scheme requirement for Current Differential and Distance relays.
iii. For LPC installations of 275kV and above, direct transfer trip through Breaker Fail operation shall be provided.

The preferred choice of communication channel is through fibre optic links but other modes maybe considered due to constraints.
Note: Fibre/pilot cable is supplied by TNB and LPC’s responsibility on the fibre/pilot starts from where the pilot/fibre first terminates (junction/terminal box) within the LPC’s premise, unless it is stated otherwise in IOM. Maintaining the communication equipment at the LPC’s premise shall be the responsibility of the LPC.

4.3 Protection Scheme Guideline

LPC shall ensure that their protective equipment (multifunction protective relays or discrete relays) shall be suitable for the type of interconnection. Table 2 below describes the protection function, detection functions, equipment involved and boundaries/responsibilities for radial feed interconnection, both spur from existing TNB Main Intake Substation ("PMU") or switching station.
Table 2: Protection Scheme for Radial Feed

<table>
<thead>
<tr>
<th>Protective function</th>
<th>Set to Detect</th>
<th>Equipment Tripped</th>
<th>Responsibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Feeder Main/backup protection (if applicable)</td>
<td>System fault along the interconnection feeder</td>
<td>Feeder circuit breakers</td>
<td>Installed by LPC</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Maintained by LPC</td>
</tr>
<tr>
<td>2. Busbar protection or special protection</td>
<td>Busbar fault</td>
<td>All HV CBs connected to busbar</td>
<td>Installed by LPC</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Maintained by LPC</td>
</tr>
<tr>
<td>3. Complete Transformer protection</td>
<td>1. Transformer and ancillary equipment fault (CT, CVT, LA)</td>
<td>Transformer circuit breakers</td>
<td>Installed by LPC</td>
</tr>
<tr>
<td></td>
<td>2. Remote fault after transformer LV side</td>
<td></td>
<td>Maintained by LPC</td>
</tr>
</tbody>
</table>
5.0 TYPES OF INTERCONNECTION OPTIONS ALLOWED BY TNB

In general, there are only two (2) types of network interconnection options that are allowed by TNB, after taking into consideration system reliability and security factors. The allowed choice of configuration, as illustrated below, would differ depending on factors such as location, system constraints, land acquisition, loading and other factors. The allowed configurations are:-

5.1 Option 1A, 1B and 1C: Spur feed connection from new switching station (double circuit OHL/UGC/GIB)

This configuration options consist of new dedicated OHL line feeders (Option 1A), UGC feeders (Option 1B) GIB (Option 1C) from a new switching substation as illustrated in Diagram 1 below. This configuration has the advantage of highest system reliability and security with greater operational flexibility and extendibility for future projects or extensions at customer end.

Switching station and LPC’s station shall be completed with physical tubular busbars/GIS whilst the Bus Section/Bus Couplers shall be completed with isolators and busbar protection.

Note: Option 1A/1B/1C shall require LPC to bear all the expenses incurred for the new dedicated switching station and other associated project costs. The Ownership and Maintenance Boundary demarcation as in Diagram 1 also denotes the ownership boundary of the assets.

The salient technical advantages of this option are as below:-

- Highest system reliability/security/contingency
- Auto-reclose available for OHL and UGC (<500m)
- No supply interruption during maintenance
- Less maintenance required for cable feeders
- Easier/Faster extendibility (at TNB’s side) for future upgrading works/projects on LPC’s side
- Better system operational flexibility
- No requirement for SCADA/Telecommunication at customer’s end
Table 3: Requirements for Mode of Interconnection (Option 1A, 1B & 1C)

<table>
<thead>
<tr>
<th>Option</th>
<th>Mode of Interconnection</th>
<th>System Requirement</th>
</tr>
</thead>
</table>
| Option 1A, 1B & 1C | Double circuit OHL/UGC/GIB Spur Connection from new switching station | **Operation**
- Requires appointment of full time RE
- Compliance to RISP procedures
- CB control at switching station required
- CB control at LPC substation not required by NLDC
- Requires Bus Section/Bus Coupler installations with isolators
- Requires primary / physical Busbar (Refer Appendix II) | **Primary**
- All incomers and transformers operated using circuit breakers and with complete typical bay equipment(s)
- Requires Bus Section/Bus Coupler installations with isolators
- Requires primary / physical Busbar
- Complete Feeder Protection
- Completed Transformer Protection
- Busbar Protection or special protection scheme (IOC) |
Diagram 1: Typical Configuration with Spur Double Circuit OHL/UGC/GIB from new Switching Station (Option 1A/1B/1C)
5.2 Option 2A & 2B: Spur feed connection from existing PMU (double circuit OHL/UGC)

Spur feed connection from existing PMU, via dedicated feeders from nearby substation using OHL or UGC connections as shown in Diagram 2 below. This configuration has the advantage of high system reliability and security/contingency where system interruption is minimal during forced or planned outages, as long as the system is in parallel operation mode at the customer’s end.

However, factors of availability of nearby PMUs, extendibility facilities at existing PMU and the right of way (ROW) may have to be considered prior to any approval for this type of configuration to new customers.

Note: LPC’s station shall be completed with physical tubular busbars/GIS whilst the Bus Section/Bus Couplers shall be completed with isolators and busbar protection. The Ownership and Maintenance Boundary demarcation as in Diagram 2 also denotes the ownership boundary of the assets.

The salient features of these options are as below:-

- High system reliability /security/contingency
- No supply interruption during maintenance/ forced outages on single circuit
- Less maintenance required for cable feeders
- Good system maintainability/operational flexibility
- Faster implementation compared to Option 1
Table 4: Requirement for Mode of Interconnection (Option 2A & 2B)

<table>
<thead>
<tr>
<th>Option</th>
<th>Mode of Interconnection</th>
<th>System Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Option 2A & 2B</td>
<td>Double circuit OHL/UGC Spur Feed Connection from existing PMU</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Operation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Requires appointment of full time RE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Compliance to RISP procedures</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• CB control at LPC substation not required by NLDC</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Primary</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• All incomers and transformers operated using circuit breakers and with complete</td>
</tr>
<tr>
<td></td>
<td></td>
<td>typical bay equipment(s)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Requires Bus Section/Bus Coupler CB installations with isolators</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Requires primary Busbar</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Refer Appendix II)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Secondary</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Complete Feeder Protection</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Complete Transformer Protection</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Busbar Protection or special protection scheme (IOC)</td>
</tr>
</tbody>
</table>
Diagram 2: Typical Configuration with Spur Double Circuit OHL/UGC from Existing PMU (Option 2A & 2B)

Ownership & Maintenance Boundary (Refer details on Appendix I)
6.0 SPECIAL INTERCONNECTION (CO-GENERATION, STANDBY GENERATOR etc.)

If co-generation or standby generation at LPC’s end is involved, the mode of interconnection is as described in clause 5.1, where TNB’s fully switched switching station with synchronizing facility shall be used to ensure safe synchronisation to the Grid System. All technical and operational requirements as stipulated in clause 5.1 shall apply. However, depending on the complexity and criticality of the co-generation plant, TNB shall impose additional technical requirements after a detailed study is carried out, to ensure that the security of the Grid System is not jeopardised.
Diagram 3: Typical Special Configuration with Co-generation at LPC

Ownership & Maintenance Boundary (Refer details on Appendix I)
7.0 OTHER MODES OF INTERCONNECTIONS

Any other interconnection mode or medium suggested/proposed by LPC that deviates and is “inferior” to the technical and operational requirements as stated in this Guideline, shall be considered on a case-to-case basis, with the ULTIMATE PRIORITY being the integrity, security and reliability of the Grid System.

8.0 REFERENCES

2. Malaysian Grid Code
3. TNB’s Transmission Reliability Standards
4. TNB’s Transmission Protection Application Guideline
5. TNB License – 1st September 1990
6. Interconnection Operation Manual (IOM)
7. Electricity Regulations 1994
Appendix I: Ownership and Maintenance Boundary

1) Landing: Conductor to Conductor. (OHL – AIS)

Note: The Interconnection Point between TNB and LPC Facility for the 132kV or 275kV is (i.e two physical points) at the T-clamp leading to the down dropper conductors of the LPC AIS Main intake Substation.
2) Landing: Conductor to GIS Station (OHL – GIS)

Note: The Interconnection Point between TNB and LPC Facility for the 132kV or 275kV is (i.e two physical points) at the T-clamp leading to the down dropper conductors of the LPC AIS Main intake Substation.
3) **Cable Connection Feeders to AIS Station (Cable – AIS)**

Note: The Interconnection Point between TNB and LPC Facility for the 132kV or 275kV is (i.e two physical points) at the sealing end termination at the LPC Main intake Substation. The ownership and maintenance of the termination and sealing end at the LPC’s end is under the responsibility of the LPC.
Note: The Interconnection Point between TNB and LPC Facility for the 132kV or 275kV is (i.e two physical points) at the GIS Termination at LPC’s GIS Main intake Substation. The ownership and maintenance of the termination at GIS is under the LPC’s responsibility.

**Note: For all the above interconnections, the boundary of ownership and maintenance of the fibre connection (for tele-protection and communication purposes) between TNB and LPC would be at the first termination at the LPC’s premise.
Appendix II: Typical System Configuration or Installations

1) Typical Complete LPC Substation Configuration
 (Double Busbar AIS Configuration with HV BS and BC)
2) Typical Feeder Bay Configuration

1. Busbar
2. Busbar Isolator
3. Circuit Breaker
4. Current Transformer
5. Line Isolator
6. Line Earth Link
7. Capacitive Voltage Transformer
8. Surge Arrestor
3) Typical Transformer Bay Configuration

1. Busbar
2. Busbar Isolator
3. Circuit Breaker
4. Current Transformer
5. Line Isolator
6. Line Earth Link
7. Capacitive Voltage Transformer
8. Surge Arrestor